skip to main content


Search for: All records

Creators/Authors contains: "Xiao, Hong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 physically associated with RPW8.2 with its RING finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase of RPW8.2 in the nucleus. In turn, the nucleus-localised RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity. 
    more » « less
  2. Abstract Background

    Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes.

    Results

    In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble.

    Conclusions

    Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from:http://bioinfolab.unl.edu/emlab/consemble/.

     
    more » « less
  3. Abstract

    The discovery of electrides, in particular, inorganic electrides where electrons substitute anions, has inspired striking interests in the systems that exhibit unusual electronic and catalytic properties. So far, however, the experimental studies of such systems are largely restricted to ambient conditions, unable to understand their interactions between electron localizations and geometrical modifications under external stimuli, e.g., pressure. Here, pressure‐induced structural and electronic evolutions of Ca2N by in situ synchrotron X‐ray diffraction and electrical resistance measurements, and density functional theory calculations with particle swarm optimization algorithms are reported. Experiments and computation are combined to reveal that under compression, Ca2N undergoes structural transforms fromRmsymmetry toI2dphase via an intermediateFdmphase, and then toCcphase, accompanied by the reductions of electronic dimensionality from 2D, 1D to 0D. Electrical resistance measurements support a metal‐to‐semiconductor transition in Ca2N because of the reorganizations of confined electrons under pressure, also validated by the calculation. The results demonstrate unexplored experimental evidence for a pressure‐induced metal‐to‐semiconductor switching in Ca2N and offer a possible strategy for producing new electrides under moderate pressure.

     
    more » « less